0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 SlicingProof (LOWER BOUND(ID), 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 392 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 58 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 RewriteLemmaProof (LOWER BOUND(ID), 5 ms)
↳16 BEST
↳17 typed CpxTrs
↳18 LowerBoundsProof (⇔, 0 ms)
↳19 BOUNDS(n^1, INF)
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^1, INF)
↳23 typed CpxTrs
↳24 LowerBoundsProof (⇔, 0 ms)
↳25 BOUNDS(n^1, INF)
↳26 typed CpxTrs
↳27 LowerBoundsProof (⇔, 0 ms)
↳28 BOUNDS(n^1, INF)
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
g(f(x), y) → f(h(x, y))
h(x, y) → g(x, f(y))
g(f(x)) → f(h(x))
h(x) → g(x)
They will be analysed ascendingly in the following order:
g = h
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
h, g
They will be analysed ascendingly in the following order:
g = h
Induction Base:
h(gen_f2_0(0))
Induction Step:
h(gen_f2_0(+(n4_0, 1))) →RΩ(1)
g(gen_f2_0(+(n4_0, 1))) →RΩ(1)
f(h(gen_f2_0(n4_0))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
g = h
Induction Base:
g(gen_f2_0(+(1, 0)))
Induction Step:
g(gen_f2_0(+(1, +(n112_0, 1)))) →RΩ(1)
f(h(gen_f2_0(+(1, n112_0)))) →RΩ(1)
f(g(gen_f2_0(+(1, n112_0)))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
The following defined symbols remain to be analysed:
h
They will be analysed ascendingly in the following order:
g = h
Induction Base:
h(gen_f2_0(0))
Induction Step:
h(gen_f2_0(+(n335_0, 1))) →RΩ(1)
g(gen_f2_0(+(n335_0, 1))) →RΩ(1)
f(h(gen_f2_0(n335_0))) →IH
f(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
h(gen_f2_0(n335_0)) → *3_0, rt ∈ Ω(n3350)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_f2_0(n335_0)) → *3_0, rt ∈ Ω(n3350)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
g(gen_f2_0(+(1, n112_0))) → *3_0, rt ∈ Ω(n1120)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.
Lemmas:
h(gen_f2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(gen_f2_0(x))
No more defined symbols left to analyse.